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Abstract. We report measurements of the magnetisation-derived critical current jc in 
T1Ba2Ca3Cu,0,, a 122 K superconductor. Analysisof the field H*c2, at which j,scales to zero, 
naturally falls into two regimes: a low-temperature regime, which can be described by flux- 
lattice melting, and a high-temperature regime dominated by flux creep. In the latter regime, 
the scaling of both H*c2 and the sample resistivity with temperature are in good agreement 
with a model proposed by Tinkham, when anisotropy effects are taken into account. From 
the former regime, we infer Hc211( T = 0) 430 T. 

1. Introduction 

For high-critical-current (j,) applications of the new high-T, oxide superconductors [l] ,  
the effects of pinning must be studied in detail. In these studies, analysis of the scaling 
properties of the bulk pinning force Fp = j,H, where His  the applied magnetic field, has 
proven extremely valuable. Recently, it has been shown [2,3] that the new high-T, 
superconductors obey a simple scaling law similar to the form proposed by Kramer [4]: 

F ,  = y2HfH”2(1 - b y  (1) 

where H ,  is the thermodynamic critical field, b = H/H*,,, and y is a constant = 1700, if 
j c  is in A cm-2 and all fields are in T. However, in Kramer’s theory, H:2 = Hc2 ,  the upper 
critical field, whereas most high-T, experiments show H:2 < Hc2. The experiments 
measure either the transport critical current in a thin film [2] or the magnetisation critical 
current in a bulk polycrystalline pellet [3]. The present paper reports both magnetisation 
and magnetoresistance measurements on a new material, a four-copper-layer T1-based 
compound with T, = 122 K. Measurement of the scaling field H,*(T) ailows recon- 
struction of a flux lattice H-T phase diagram. Three phases are found: a flux lattice, a 
fluid and a ‘glassy’ phase. The boundary between fluid and glassy phases may be purely 
kinetic, determined by the point at which flux-lattice motion becomes negligible on 
the experimental timescale. This boundary is in good agreement with a scaling form 
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proposed by Tinkham [ 5 ] ,  based on a thermal activation model of Yeshurun and Malo- 
zemoff [6] (YM). Thelattice melting transition appears to be in agreement with theoretical 
predictions, if allowance is made for pinning effects. 

2. Experimental details 

The material used is a four-copper-layer T1 oxide [ 7 ] ,  with the ideal (stojchiometric) 
formula T1BazCa3Cu40, (1234). From a starting material of composition T1Pbo,2SBa- 
Ca4Cu40,, a yield of -80% of the 1234 material was achieved, with the remainder 
predominantly a (non-superconducting) cubic perovskite. The critical temperature 
scales with number of Cu layers, and for this four-layer compound T, = 122 K (figure 
1). Two forms of sample are used: either pressed, sintered pellets, or field-oriented 
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Figure 1. AC susceptibility x of TIBa,Ca,Cu,O,, showing sharp drop at T, = 122 K. 

grains [3,8] dispersed in epoxy. The degree of orientation P is defined from x-ray 
reflection intensities. While it is a convenient measure of relative orientation, some 
care must be exercised in interpreting its value. Thus the present value P = 98% still 
corresponds to a loo gaussian spread in the c axis. The precise definition is discussed in 
appendix 1. 

Two kinds of experiment were performed: the magnetoresistance of the pressed 
pellets was measured in fields up to 15 T, from 77-250 K; also, the magnetisation j c  was 
determined for both types of sample, following standard procedures. A hysteresis loop 
of magnetisation against field was measured at a series of different temperatures. From 
the width of the hysteresis loop, A M ,  the critical current was determined using the 
critical-state model [9] 

A M  = r j c / a  ( 2 )  
where r is a typical grain radius ( r  - 5pm) and a = 17 for a spherical grain. Note that, 
because of the unusual weak-link behaviour of the high-ir, superconductors, it is the 
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Figure 2. Capacitance AC CC M H ,  for unoriented polycrystallinepellet, showing H ,  (broken 
lines) and H:, (region above H:, is hatched). 

individual grain radius r that enters equation (2) rather than the total sample radius. 
This is because the external field readily breaks down the weak Josephson connections 
between grains, so that the magnetisation hysteresis is a measure of intragrain j,. The 
weak Josephson links also act to suppress the transport j,, which is typically orders of 
magnitude smaller than the magnetisation j ,  in a polycrystalline sample. 

Magnetisation measurements on the epoxy sample were carried out using a com- 
mercial SQUID magnetometer, with fields of up to 5 T aligned either parallel or per- 
pendicular to the c axis (low-conductivity direction). Measurements on the pressed 
pellet were made using a capacitance magnetometer [lo], which allowed operation up 
to 15 T,  with simultaneous measurement of sample resistivity. The SQUID data were 
accumulated at a slow rate, taking -40 min per point to allow the field to stabilise. By 
contrast, the full-capacitance data could be accumulated in 2 min, although 10 min was 
more typical 

3. Results 

Figure 2 shows typical data for the hysteretic magnetisation of a pressed, unoriented 
pellet of the T1 superconductor, taken using the capacitance magnetometer. The output 
is AC, the change of the capacitance in a magnetic field due to a force or torque acting 
on the sample attached to one (adjustable) plate of the capacitor. The force has the form 

while a torque T = M x B can also lead to a capacitance change. In either case, 
F ,  = M ,  dB/dz  (3) 



8948 R S Markiewict et a1 

1.0 

\ 
0.5 

0 0.5 1.0 

H/H:,  

Figure 3. F,/F,,,, against HIHI , ,  for the data of figure 2 (broken curves) against equation 
(1) (full curve). Dotted curve is that generated with minor hysteresis loops. 

AC = M B ,  so the width of the hysteresis is directly proportional to Fp. By moving the 
sample to the centre of the magnet (dB/dz = 0) it was found that the torque term is very 
small in the present configuration. In these experiments, the samples were placed off- 
centre, so AC = F,. The parabolic increase of AC at high fields is due to  a paramagnetic 
contribution in the normal state. The vertical broken lines in figure 2 show the maxima 
of the hysteresis loops, proportional to F,,,,, at fields H,. The magnetisation hysteresis 
is replotted in scaled form in figure 3, as F,/Fp,,, against H/H:2, taking H,*, = 5H,, as 
given by equation (1). All four data sets follow the same scaling behaviour, which is in 
basic agreement with equation (1) (full curves). 

One problem is evident with the capacitance data in figures 2 and 3: there is a small, 
residual, nearly-field-independent hysteresis at fields >Hc*. This is not a real mag- 
netisation effect, but varies with sweep rate. By sweeping slowly and looking at minor 
hysteresis loops, reversing the field about once per tesla, it can be shown that AM goes 
to zero near Hz2. Unfortunately, the width of the minor hysteresis loops underestimates 
A M .  The dotted curve in figure 3 shows a typical scaling curve using these minor loops. 
Hence, the most accurate way to determine H:2 is either by taking HE2 = 5 H ,  , or by 
replotting the data as in figure 4 (discussed below) and extrapolating the linear region. 

Equation (1) can be rewritten 

jf/2H'/4 = yH,(1 - b )  (4) 

showing that a plot of the left-hand side of equation (4) against H will yield a straight 
line with intercept H = H $ .  Figure 4 shows typical data taken for the same sample as in 
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Figure4. (a) Capacitance AC a M H ,  at T = 4.2 K, for same sample as figure 2 .  Arrowsshow 
direction of field sweep. Note that curve drops below full hysteresis loop (broken curve) due 
to field reversal near 15 T. ( b )  Scaling of j c  (equation (4)), for the data in (a) .  Open circles 
correspond to corrected data (broken curve in (a ) ) ;  full line is equation (4); dashed curve is 
a guide to the eye. 

figures 2 and 3, using the capacitance magnetometer, at T = 4.2 K. Figure 4(a )  shows 
AC against field and the capacitance hysteresis, AAC, proportional to A M .  Figure 4(b) 
shows the scaling of the data, after equation (4 ) .  Several features should be noted. 
First, equation ( 4 )  must break down at sufficiently low fields, since j ,  becomes a field- 
independent constant, and the left-hand side of equation (4) must go to zero. This is 
clearly seen in the data for H < 5 T. Secondly, when the direction of field sweep is 
reversed, there is a certain interval of field variation over which the hysteresis is smaller 
than the Bean model value: compare the full and broken curves of figure 4(a )  near H = 
15 T. This is an expected consequence of following aminor hysteresis loop (i.e. reversing 
the field sweep direction at a field below I f c 2 ) ,  as mentioned in appendix 2. The magnitude 
of the resulting error can easily be estimated by generating a smaller hysteresis loop 
(e.g. by reversing the field at 5 T )  and seeing how it deviates from the full (to 15 T and 
back) curve. This is how the broken curve in figure 4(a) was generated. The open circles 
in figure 4(b) correspond to the broken curve data of figure 4(a). It can be seen that 
without this correction, the scaling parameter would drop below the straight line at the 
highest fields. Extrapolating the straight line in figure 4(b) ,  j c  scales to zero at 290 T. 

Figure 5 shows more extensive data on the scaling (equation ( 4 ) ) ( .  The data are from 
a sample mounted in epoxy, taken using the SQUID susceptometer, and hence are limited 
to fields below 5 T. The linear behaviour of equation (4) is found for H parallel to 
the a, b plane (figure 5(a))  but not for perpendicular to a ,  b (figure 5(b) ) .  At high 
temperatures, the j,, data seem to be a superposition of two linear segments. At low 
fields, thej,, > jci,, butj,, falls off faster with field. Near the point where the two curves 
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Figure 5.  (a)  Scaling ofj, for H parallel to a, b.  Data are at T = 4, 15, 25,40,55 and 70 K 
(in order of decreasing j c ) .  Straight lines are fits to equation (4). (b)  Similar plots for H 
perpendicular to a, b. Same symbols as in (a). Full curves are guides to the eye; broken lines 
are high-field HI,-behaviour (taken from (a)) .  

cross, the jcL scaling curve changes over to another line more nearly parallel to the jcil 
data (broken lines). At low temperatures, this behaviour is complicated by the presence 
of a broad peak in the scaling curve. A similar behaviour was found in a lower-T, T1 
compound [3], and a possible explanation will be discussed below. Due to the limited 
number of data points, the high-field correction discussed above (broken curve in figure 
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Figure 6. Resistivity against temperature 
at fieldsH = 0,0.37,1.5,3.0,5.2,11.1 and 
14.4 T, in order of increasing broadening. 
Broken curves are extrapolated normal- 
state resistancesp, (equation ( 5 ) )  and 0.9, 
0.5 and 0.1 pn,  with pn taken from inset. 
Dotted curves are the same curves for 
alternative normal state pn (equation ( 6 ) ) .  
Inset: p / T  against T (  full curve), with best 
fit to equation (5) (broken line). 

4(a) )  could not be made. Nevertheless, the scaling results of the two measurements are 
in good agreement: j c  scales to zero at 260 T a t  4 K (figure 5(a)), whereas the capacitance 
magnetometer yielded = 290 T a t  4.2 K. At these high fields, the scaling behaviour, 
even in an unoriented sample (figure 4), will be dominated by the parallel critical field. 

Figure 6 shows plots of sample resistance against temperature at a series of magnetic 
fields. The large broadening of the transition is clearly observed. No net mag- 
netoresistance could be detected in the normal state. While the normal-state resistivity, 
p ,  varies approximately linearly with T, it has the unusual feature that any straight-line 
approximation will extrapolate to zero at a T SO. We have been able to fit the full curve 
to the form 

p = A l  T + A 2 T 2  ( 5 )  

whereA,andA2areconstants :Al  = 8.5pS2cmK-',A2 = 0 . 1 2 , ~ R c m K - ~ .  Theinset 
in figure 6 shows a plot of p/T against T. Systematic deviations from linear behaviour 
suggest that the non-linear power may be slightly less than two. Note that in a field, p 
decreases smoothly to zero as Tdecreases, and it is very difficult to estimate the threshold 
field, H a ,  at which resistance first appears. This threshold apears to be somewhat 
sharper in plots of p against H at fixed T (figure 7). These measurements were made 
simultaneously on two samples, one fresh (less than 1 week old), the other aged for 
about two months. The results were virtually identical, showing that ageing is not a 
severe problem with these materials. 

In comparing p with theory, we would ideally like to plot level curves, H ( 6 )  against 
T, where 6 = p/p, is a fixed ratio of p to its normal-state value. This, however, requires 
extrapolation of pn to T < T,. Use of equation ( 5 )  is questionable since, as seen in the 
inset to figure 6,  p /T  deviates from linear behaviour for T < 150 K. This behaviour 
has been observed in other high-Tc superconductors, and is usually interpreted as a 
fluctuation effect (although the field dependence is surprisingly weak). The broken 
curves in figure 6 show level curves based on equation ( 5 ) ,  for 6 = 1.0,0.9,0.5 and 0.1. 
The curve for 6 = 0.9 in particular is seen to be severely distorted by the 'fluctuation 
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Figure 7. Resistivity against field at fixed T. 

effects.’ The dotted curves in figure 6 show the level curves for an alternative rep- 
resentation of pn. This is found by fitting a simple Taylor series to p only in the range 
below 130 K. With the restriction that pn( T = 0) 2 0, a solution of the form of equation 
( 5 )  could not be found, the simplest solution being 

p = B I T +  B1T4 (6) 
where B1 = 9.44 pS2 cm K-’, B2 = 6.6 x nS2 cm K-4. The dotted curves in figure 6 
represent equation (6) for S = 1.0,0.9,0.5 and 0.1. The dotted and broken level curves 
run approximately parallel to each other, differing primarily in the precise value of 6; 
they are also not very different from the horizontal lines which Tinkham [5] used in his 
analysis. This is fortunate, since a proper incorporation of fluctuation effects is beyond 
the scope of this paper. In summary, it can be seen that thescaling behaviour (Hagainst 
T for the level curves) is insensitive to the choice of pn; on the other hand, values of 6 
extracted from the experimental data (or, equivalently, of H,, defined below in equation 
(11)) are subject to substantial error. The scaling curves Hn(T) (extracted from the 
dotted curves of figure 5 for 6 = n/lO) are plotted in figure 8 and compared with the 
theoretical form discussed below. 

Three other sets of data are also plotted in figure 8. Two sets are values of H*c2, one 
for the unoriented pellets and the other for the H 11 (a,  6) grains in epoxy. The differences 
between the two curves are relatively small. The third set is an estimate of H:2, the 
threshold field at which resistance first appears. This is a subjective criterion, subject to 
large uncertainty since it corresponds to a very small resistance, 6 6 Indeed, the 
theory shows that there is not a well defined threshold, but only an exponentially 
decreasing p as Tdecreases. It is included here mainly to show that there is a substantial 
inequality, 

H:2 < HZ2. (7) 
This inequality is expected theoretically [ 5 , 6 ] .  In a fluid regime, there will still be an 
apparent j ,  = 0 at low temperatures or low fields, simply because the rate of thermal 
activation becomes so low that equilibrium is not achieved in the finite duration of the 
experiment, Theoretical estimates suggest that H*c2, in the fluid regime, is approximately 
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Figure 8. Scaling fields against T H,, (A), H5 (O), H ,  (W) ,  HTz ( A )  and H:* both for pellets 
(0) and oriented grains (0 = dl ? U, b ) .  Full curves are given by equation ( l l ) ,  for various 
values of H,). 

a level curve corresponding to 6 - lo-'. We shall see that this behaviour is largely in 
agreement with experiment. 

The inequality (equation (7)) is not found in transport measurements of j ,  on thin 
films. However, this is expected wheneverj, is measured by direct transport techniques. 
In fact, it is a tautology: j ,  = 0 is equivalent to R = lim,+o(V/l) = 0. 

4. Discussion 

4.1. Flux creep 

There is a close relationship between the experimental fields H*c2 and the H( T*)  intro- 
duced by Muller et a1 [ l l ]  (MTB). In appendix 2 it is shown that within the critical-state 
model they are identical. Hence the discussions of references [5]  and [6] should apply to 

YM [6] shows that H(T*)  could be interpreted in terms of flux creep: thermally 
activated depinning of vortex lines from pinning centres. Tinkham [5]  showed that the 
broadening of the resistive transition can be described by Ambegaokar-Halperin theory 
[I21 * 

P/Pn = [IO(UP/% 771 -* (8) 

where Up is the pinning energy of a vortex and lo is a modified Bessel function. Tinkham 
writes 

Up = (3V'h;P/2c)Jc/H (9) 
where P 2: 1 is a numerical constant and J ,  is the intrinsic Ginzberg-Landau critical 
current density which is proportional to ( 1  - t)3/2 near T, where t = T/T,. Equations ( 8 )  
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Figure 9. Resistivity against T at various fields: 
same data as figure 6, but now including the fits 
to anisotropic flux-creep theory (i.e., inserting 
equation (12) into equation (8)). Full curves are 
the data; broken curves are the theory; dotted 
curve is the normal-state resistance (equation 
(6)). Inset: full circles are the values of Ho 
(equation (10)) obtained from fitting H g ,  H5  and 
H,(T), figure 8. The broken curve is the best fit to 
equation (8) assuming isotropioc resistivity; the 
full curve includes the resistivity anisotropy 
(equation (12)). 

and (9) may be recast to say that the level curves of p (i.e. p/p, = 6) are all related by a 
scaling relation 

H = f f O ( M t )  ( 10) 

where 

g(r) = (1 - t 2 ) ( 1  - r 4 ) 1 / 2 / r  - 4(1 - r)”’. 
1- 1 

The full curves in figure 8 show that equation (10) is well satisfied for 6 = 0.9, 0.5 
and 0.1. Moreover, within the flux-creep regime j c  = 0, and an apparent non-zero j ,  
appears only as a result of slow thermal depinning. YM show that the experimental 
duration can be related to a particular value of 6 - low7. Hence should also scale 
according to equation (10). This is seen to be the case in figure 8. 

However, the values of HO(6) are in poor agreement with theory (broken curve in 
the inset to figure 9). This is in stark contrast to the excellent agreement found by 
Tinkham [5] in analysing single-crystal [13] and epitaxial-film [14] data. Taken together 
with the good scaling (figure 8), this strongly suggests that the lack of agreement is due 
to neglect of anisotropy in the polycrystalline data. In 8 4.2 it is suggested that anisotropy 
may be approximately accounted for by replacing p in equation (8) by 

P’kI  + P l ) / 2 .  (12) 

Here, pll(pJ is found from equations (8) and (9) by subs’titutingl, + l,l (Ici), whereJ,ll/ 
l,, = gl/gll = Hc2,1/Hc2L = 10. This leads to good agreement with experiment both for 
p ( T )  and H,(6) (figure 9). From these fits, we find /3lc1,(T= 0) = 5.3 X 106A cm-2, 
compared with 1.8-4 x lo7 cm-2 for YBCO [ 5 ] .  Moreover, within this model HT2 cor- 
respondst06 = 1.5 x 10-2andH*,2to 6 = 5 x Asanticipated, H;! doesnot follow 
a scaling relation very accurately, but these values of 6 are in good agreement with 
expectation. 
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4.2. Anisotropy 

Analysis of the pressed pellet data is complicated by the strong two-dimensional ani- 
sotropy of these materials, pc/pa > 100, or Hc2,,/Hc21 2 10. In effective-medium theory, 
it can be shown [ 151 that for randomly oriented grains the pc + x limit can be taken, and 
the equivalent resistivity is just twice that of a two-dimensional medium, with neglect of 
the grains aligned along pc. In a field, the grains will still have a random distribution of 
the angle between the applied field and the conductivity plane, and since Hc,ll # Hc2_,  
this will lead to a broadening of the resistive transition. Ths broadening will occur even 
in the absence of flux-creep broadening. In reference [15] an attempt was made to 
interpret the broadening in YBa2Cu307-6 solely in terms of H,, anisotropy. This inter- 
pretation can be shown to be incorrect for the following reasons: (i) the broadening 
is present in single crystals; (ii) the analysis of reference [15] overestimates the Hc2 
anisotropy; (iii) in the present samples, we have found that the anisotropy broadening 
predicted by reference [15] is too small, even in the limit Hc21 + 0, to explain the 
data. Hence the primary cause of the broadening must be the flux-flow mechanism. 
Nevertheless, there remains the problem of incorporating the anisotropy into the flux- 
flow analysis. 

In effective-medium theory, the distribution of grains in a field is approximately 
equivalent to a bimodal distribution, with half of the grains having field parallel to the 
a-b plane, with p = pll, and half with p = pL. Then peff = G, since the system is at 
the percolation limit. Incorporation of this limit into the flux-flow theory yields level 
curves almost equivalent to the isotropic case-and hence poor agreement between 
experiment and theory. We have empirically found that the arithmetic mean (equation 
(12)) provides a satisfactory description of our data for a ratio HC2~~/Hc2,  = 10, as 
discussed in § 4.1. Figure 9 compares the experimental R ( H ,  T )  curves (full curves) with 
the theoretical values found by using equation (8) to calculate (broken curves). Close 
inspection of figure 9 reveals that the agreement is only approximate: the experimental 
data resemble a smoothed-out version of the theory, with no evidence of the predicted 
fine structure. This is to be expected, since a proper theory would average the resistivity 
over all possible orientations of the field with respect to the crystal axes. 

The form of equation (8) is suggestive of a series combination of resistors. It has 
recently been pointed out [ 161 that the normal-state resistivity of the high-T, super- 
conductors displays giant deviations from Matthiessen’s rule. This can be understood if 
most grain boundaries are opaque to electronic transport, leaving only a few convoluted 
paths through the material. In this case, it is clear that the number of parallel channels 
is limited, so p will be a series average (equation (12)) over the differently oriented 
grains. 

4.3. Flux-lattice melting 

Figure 10 shows the data on H*c2 extended to lower temperatures. (The other fields in 
figure 8 cannot be measured at these temperatures in the available field range H s 15 T.) 
Also shown is the extrapolation of the scaling curve of figure 8 (dotted curve). A clear 
break is observed near T = 40 K,  the experimental values falling significantly above 
this curve at lower temperatures. This can be understood in terms of flux-lattice melting 
[ 17,181 as discussed in a recent paper [19]. In order to compare the experimental melting 
curve with theory, the critical field Hc211 must be known. This is estimated as follows. 
Werthamer-Helfand-Hohenberg [20] theory is used to determine Hc2( T )  in terms of 
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Figure 10. Critical fields against T. Open circles are H*,2,; full curve is Hczl,; broken curve is 
H,; dotted curve is flux-flow scaling, equation (1 1) (similar to figure 8, but adjusted for best 
fit of H*c2,, data). See discussion in text. 

two parameters, Hc2(0) and A,,, the spin-orbit scattering parameter. Essentially, A,, is 
adjusted to describe Hc2 near T,, while Hc2(0) is adjusted to give the best agreement 
between and the melting curve, HM(T). There is some uncertainty in determining 
Hc2( T = T,), since the above calculations (figure 8) implicitly assumed that T, is inde- 
pendent of H .  Rather arbitrarily, the field H9 has been equated with Hc2. For the present 
purposes the error is likely to be small, since Hsl varies from zero to 15 T as T changes 
by only 3 K, while the melting is only sensitive to T < 40 K. The value As, = 10 may be 
taken as representative, with large error bars. With this value, Hc2(0) = 430 T, and the 
full curve of Hc2( T )  is shown in figure 10. The melting curve extrapolates to TM = 40 K 
at H = 0. This value is in good agreement with that of Gammel eta1 [21],  who find TM = 
40 K in a T, = 110 K T1 compound and TM = 30 K in a Bi compound. 

Given the critical field, the melting curve HM can be constructed if a melting par- 
ameter, yM, is known where 

YM = y L / m  (13a) 

y g  = 2 ( 4 ~ ) ~ f i A i k B  Tc/aq5i (13b) 

8 M  = Jd e(np/d)1’2 fp/C,(j. (13c) 

HereAois theLondonpenetration depthat T = 0, disthegraindiameter, aisanumerical 
coefficient 2. 1, np the density of pins, fp the force per pin and c6, the flux lattice shear 
modulus and e the base of natural logarithms. The factor bM is an approximate correction 
factor to allow for pinning effects [18,22,23].  The broken curve in figure 10 corresponds 
to yM = 1.7. The value is about an order of magnitude larger than the value of y& inferred 
from equation (136). While the correction factor aM renormalises & in the right 
direction, the large magnitude of the renormalisation suggests that a more accurate 
theory of pinning effects may be needed. 

Because of the bend rigidity, the flux lattice can be treated as two-dimensional. 
However, when it disorders the correlation length parallel to the field collapses, so the 
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fluid and glassy phase must be treated as three-dimensional. Nelson [24] has suggested 
that there could be unusual vortex entanglement effects in this fluid phase. Since H M  is 
proportional to Hc2, the melting should also be anisotropic, occurring first when the field 
lies along the crystalline c axis. This may be the origin of the deviations from scaling 
observed in figure 5(b)  [25]. 

Note added in proof. The unexpectedly small bend modulus of the vortex lattice necessitates a three- 
dimensional treatment of flux-lattice melting. A Lindemann criterion approach yields good agreement with 
the data [30]. 

4.4 .  Flux-lattice phase diagram: solid, liquid, glass 

MTB [Il l  pointed out that the scaling relation, equation ( l l b ) ,  has the same exponent 
as the deAlmeida-Thouless (AT) line [26] in a spin glass. They suggested that this 
resemblance was not accidental, and that the high-T, superconductors are examples of 
a glassy superconductor-an array of Josephson-coupled superconducting ‘grains’ [27]. 
It soon became clear that the ‘grains’ must be considerably smaller than the actual 
physical grains making up the ceramic superconductors, and YM suggested an alternative 
derivation of equation (12b) in terms of flux creep (discussed above). Tinkham [5]  
suggested that the distinction between glassy superconductivity and the flux-creep 
regime is largely semantic. In high fields, the ‘grains’ must be coherent superconducting 
regions considerably smaller than the physical grains; Tinkham associates them with 
coherent regions of a flux lattice. The Josephson energy of a grain in one picture is 
equated with the pinning energy in the other; more precisely, 2EJ = Up. 

The present results support Tinkham’s viewpoint, with one subtle difference. The 
scaling is observed at temperatures above the temperatures at which the flux lattice 
has melted. Hence, it may be interpreted as a classical glass transition, from fluid to 
disordered glass, within the flux vortex fluid. In the presence of weak pinning, the flux 
lattice locally distorts to accommodate the pin distribution, with strains being relieved 
by grain-boundary formation. As the number or strength of the pins increases, more 
grain boundary is formed until, beyond a critical pinning strength, the grain size collapses 
to -zero, leading to a disordered state (glass). The distinction between glass and fluid 
depends on whether vortices can flow in response to an applied current. As such H*c2( T )  
does not appear to be a thermodynamic phase boundary, but depends on the effective 
observation time. This same holds true for an ordinary glass transition and, apparently, 
the spin-glass AT line as well. This interpretation provides a satisfying picture of a glassy 
superconductor. 

It is not immediately apparent that Tinkham’s analysis is restricted to a fluid or 
strongly disordered phase. We believe that this arises in equation (lo), from treating /? 
as a field-independent constant. This parameter is proportioned to the ratio AU/2E,, 
where E, is the average vortex energy and AU the average change in energy per vortex 
due to pinning. If the number of pinning centres per unit volume np is low compared 
with the flux density n ,  then 

AU/2EJ a npa/n (14)  

where a is a vortex lattice constant, II = B/G0 = 2/(v/3a2),  where Go = hc/2e is the 
superconductingflux quantum. In this case, /? - HP3l2 ,  in contrast to Tinkham’s assump- 
tion that p is constant. Hence Tinkham’s model only holds in the strong-disorder limit, 
with many more pinning centres than flux lines. 
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The above results somewhat moderate the pessimistic opinions expressed in ref- 
erence [5] .  The very low intragrain j,s seem to be associated with the fluid vortex phase. 
Since HM HCz,  discovery of superconductors with higher T, (and hence higher Hc2)  
should allow a vortex lattice to persist to higher temperatures. Horeover, since yM 
depends on pinning, it may prove possible to enhance HM even in the presently known 
compounds. 

5. Conclusions 

We have shown that flux-creep theory provides an excellent description of the broad- 
ening of the resistive transition in T1Ba2Ca3Cu40,, when proper account is taken of 
anisotropy effects. The same theory also properly describes the temperature dependence 
of the scaling field, Hc2, at higher temperatures, although a sharp rise in below 40 K 
may signal the flux-lattice melting transition. Recently, Hettinger et a1 [2] provided 
additional evidence in favour of a flux-creep theory, by showing that the theory does 
predict a scaling of j ,  against H ,  T which is very similar to the Kramer form, equation 
(1). 
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Appendix 1. Orienting P-factor 

To quantify the degree of c-axis alignment, we have introduced a convenient measure, 
the P-factor, based on relative x-ray intensities. In a perfectly aligned sample, only (001) 
reflections would contribute to x-ray reflection from the sample c face. Hence a measure 
of orientation is 

P = (1 - r) x 100% (A.1) 
where r is the relative intensity of the strongest forbidden (non-(001)) reflection, nor- 
malised to an unoriented sample. Specifically, r = ( Z ~ , ~ / Z ~ o , ) o / ( I ~ ~ ~ / Z o ~ ~ ) " ,  where Z,,, 
stands for the intensity of the hkl x-ray reflection intensity, the subscript hkl(00l) refers 
to a particular forbidden (allowed) reflection, and the superscript o(u) means that the 
measurement is carried out on an (un)oriented sample. 

This measure can be related to a more familiar measure as follows. If the oriented 
sample is characterised by a gaussian spread of c axes of width Bo,  then 

Here it is assumed that the forbidden reflection is degenerate, with the ith reflection 
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having a relative contribution ., and Oi is the angle between the reflecting normal and 

samples with P = 98%, based on the (approximately) degenerate reflections (llO), (103) 
and (013). For these reflectionsf, -fi =f3 = 1/3 (from model calculations), O1 = 90" 
and O 2  = O3 = 18.4'. Thus P = 98% corresponds to Bo = 9.8", still a substantial spread. 
(Note that the contribution of 8 ,  to r is negligible.) This result is in accord with rocking- 
angle x-ray measurements on similarly prepared samples [28]. 

For T1Ba2Ca3Cu40x, the reflection corresponding to (200) and (117) is used. Here 
the& are more sensitive to the model parameters but approximatelyf, = 0.59,f2 = 0.41, 

= 90" and O 2  = 11.42'. Hence P = 98% implies eo= 10.0". 
Armed with this information, we can ask whether the anomalous behaviour of figure 

5(b) could be explained by a certain fraction of misaligned grains. In the related Bi 
compounds, Hc2(8)  = Hc2L unless 8 is within 10" of the parallel axis [29]. (Actually, the 
quantity measured is the HT2 anisotropy.) This feature has to do with the strong two- 
dimensional anisotropy, and is likely to be similar to T1 compounds. Hence, the parallel- 
field behaviour will only arise in those grains which are misaligned by at least 80". The 
probability for the misalignment angle 8 to be greater than 80" is S e~p[-(80/10)~]  = 

the c axis, cos 8; = I /  + h2 + k 2  + I*. For instance, in YBa2Cu307, we have oriented 

i.e. totally negligible. 

Appendix 2. HZ2 = H ( T * )  

Within the critical-state model [9], the hysteretic magnetisation of a superconducting 
grain has a unique upper bond, AM/2, corresponding to the maximum critical current 
j c  circulating in the same direction throughout the grain. There is likewise a unique lower 
bound, -AM/2, corresponding to the same current circulating in the opposite sense. In 
a zero-field-cooled (ZFC) experiment [ 111, the measured (hysteretic) magnetisation 
corresponds to maximal flux exclusion at that field and temperature, or MZFC = -AM/ 
2. In a field-cooled (FC) measurement, MFc corresponds to maximum flux trapping, or 
MFC = AM/2. Hence, MFC - MZFC = AM; thus both quantities vanish at the same field, 
or 

H( T*) = H:2. (A.3) 
The adequacy of the critical-state model can be tested by studying minor hysteresis 

loops. With the critical-state model, the magnetisation should switch from AM/2 to 
-AM/2, when the applied field decreases by AH = 4nAM. This is approximately 
satisfied (to -10% at low T ;  to a factor of two near H:2; see figure 3) by our data. 
The critical-state model must break down at very low fields where intergrain currents 
becomes significant, but equation (A.3) should hold for the present experiments. 
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